

higher education \& training

Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

T650(E)(N22)T
NATIONAL CERTIFICATE

ENGINEERING SCIENCE N4
(15070434)

22 November 2017 (X-Paper)
09:00-12:00

This question paper consists of 8 pages, 1 formula sheet and 1 information sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA
 NATIONAL CERTIFICATE
 ENGINEERING SCIENCE N4
 TIME: 3 HOURS
 MARKS: 100

INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4. Subsections of questions should be kept together.
5. Rule off across the page on completion of each question.
6. ALL formulae should be shown in the answer. Show ALL the steps in between your answers.
7. Use only BLUE or BLACK ink.
8. ALL sketches and diagrams must be done in pencil.
9. Take $\mathrm{g}=9,8 \mathrm{~m} / \mathrm{s}^{2}$.
10. Write neatly and legibly.

QUESTION 1: GENERAL

1.1 Define the following:
1.1.1 The angular displacement
1.1.2 Strain

$$
\begin{equation*}
(2 \times 1) \tag{2}
\end{equation*}
$$

1.2 State the following laws:
1.2.1 Pascal law
1.2.2 Newton's first law of motion
1.2.3 Hook's law
1.3 Discuss Boyle's law in detail (show the statement, equation and the sketch).
1.4 The velocity of a Jet-C fighter plane is $650 \mathrm{~km} / \mathrm{h}$. The flight sergeant wants to fly directly west but the southerly wind of $110 \mathrm{~km} / \mathrm{h}$ blows the plane off course.

Draw a velocity vector diagram of the above in detail.
1.5 1.5.1 State TWO characteristics of liquid.
1.5.2 Name TWO types of hydraulic accumulators.
1.6 What is the direction of the north-easterly wind that is blown at $55 \mathrm{~m} / \mathrm{s}$?
1.7 In your own words explain the following:
1.7.1 Pressure is directly proportional to the density of liquid.
1.7.2 The braking force of the moving vehicle is 350 N .
[20]

QUESTION 2: KINEMATICS

2.1 A Cheetah-C jet plane flies and covers a displacement of 280 km while a south-westerly wind of $90 \mathrm{~km} / \mathrm{h}$ blows it off course. The pilot wants to go $\mathrm{N} 35^{\circ} \mathrm{W}$ within 1 hour 35 minutes.

Calculate the following:
2.1.1 \quad The resultant velocity
2.1.2 The direction of flight in order for the pilot to go $\mathrm{N} 35^{\circ} \mathrm{W}$
2.2 Two vehicles start moving simultaneously. Vehicle P moves at $270 \mathrm{~km} / \mathrm{h}$ $\mathrm{W} 64{ }^{\circ} \mathrm{N}$ while vehicle Q moves at $200 \mathrm{~km} / \mathrm{h}$ directly east.

Calculate the velocity of P relative to Q.
2.3 In the commonwealth games that were played last summer, Rosina Madihlaba was the hopeful gold medalist for South Africa. She won a gold medal from one of the fields (high jump) that she participated in at her maximum speed ever of $12,4 \mathrm{~m} / \mathrm{s}$ at 40° to the ground.

Calculate the following:
2.3.1 The maximum height she jumped
2.3.2 The velocity she needs to jump a maximum height of $4,21 \mathrm{~m}$ at 40°

$$
\begin{equation*}
(2 \times 2) \tag{4}
\end{equation*}
$$

QUESTION 3: ANGULAR MOTION

3.1 Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (3.1.1-3.1.2) in the ANSWER BOOK.
3.1.1 A blue racing car of mass of 1,8 tons races around a circular path of diameter 120 m at a speed of $180 \mathrm{~km} / \mathrm{h}$ and covers a distance of 35 m .

The angular displacement of the car is ...
A $0,835 \mathrm{rad}$.
B 0,524 rad.
C 0,355 rad.
D 0,583 rad.
3.1.2 The angular velocity of the car is ...

A $0,535 \mathrm{rad} / \mathrm{s}$.
B $0,825 \mathrm{rad} / \mathrm{s}$.
C $0,582 \mathrm{rad} / \mathrm{s}$.
D 0,833 rad/s.

$$
\begin{equation*}
(2 \times 2) \tag{4}
\end{equation*}
$$

3.2 A machine has a torque of 228 Nm at its spindle. The diameter of the spindle is 68 cm and the rotational frequency of the spindle is $12,5 \mathrm{rad} / \mathrm{s}$.
3.2.1 The power exerted is ...

A $1,85 \mathrm{~kW}$.
B $2,55 \mathrm{~kW}$.
C $1,58 \mathrm{~kW}$.
D $2,85 \mathrm{~kW}$.
3.2.2 If the efficiency of the machine is 94%, the input power of the machine is ...

A $2,30 \mathrm{~kW}$.
B $3,30 \mathrm{~kW}$.
C $3,032 \mathrm{~kW}$.
D $2,30 \mathrm{~kW}$.

$$
\begin{equation*}
(2 \times 2) \tag{4}
\end{equation*}
$$

[8]

QUESTION 4: DYNAMICS

4.1 A soccer star is travelling with a car of a mass of 880 kg on a horizontal road at a velocity of $30 \mathrm{~m} / \mathrm{s}$. He immediately applies the brakes so as to stop 50 m away (he was successful). The resistance to motion on the horizontal road is 295 N.

Calculate the following:
4.1.1 The deceleration of the car
4.1.2 The braking force
4.2 An engine exerts a force of 40000 N on a vehicle and draws it up an incline of 55000 N and draws it up an incline plane of 1:150 against a resistance of $80 \mathrm{~N} /$ ton. The total mass of the engine and the vehicle is 280 ton.

Calculate the acceleration of the vehicle.

QUESTION 5: STATICS

5.1

5.1.1 Calculate the magnitude of the supports.
5.1.2 Draw a shear-force diagram in detail.
5.1.3 Determine the bending moments at main principal points.
5.1.4 Draw the bending moment diagram in detail.
5.2 Calculate the position of the centroids of laminae from the x-axis (from AD).

QUESTION 6: HYDRAULICS

6.1 The data below refer to a single-acting hydraulic press.

Diameter of the ram piston
Diameter of the plunger piston
Stroke length of the plunger $\quad=130 \mathrm{~mm}$
Mechanical advantage of the plunger

$$
=440 \mathrm{~mm}
$$

$$
=100 \mathrm{~mm}
$$

$$
=130 \mathrm{~mm}
$$

Calculate the following:
6.1.1 The effort force that must be applied to the handle to lift a load of $4,8 \mathrm{Mg}$ if the efficiency is 92%
6.1.2 The distance the load will be raised after 150 pumping strokes of the plunger if the efficiency is 92%
6.2 The plunger of a three-cylinder pump has a diameter of 90 mm and a stroke length of 590 mm . The crankshaft speed is $240 \mathrm{r} / \mathrm{min}$.

Calculate the quantity of water delivered in litres per second if the slip is $1,8 \%$.
6.3 The borehole pumps water from a depth of 65 m at a rate of 320 litres/minute. The installation efficiency of the borehole pump is 75%.

Determine the power of the driving pump of the electric motor.

QUESTION 7: STRESS, STRAIN AND YOUNG'S MODULUS OF ELASTICITY

7.1 The following readings were obtained from a tensile test on a mild steel bar at Modise Engineers Pty Ltd.

Load KN	0	2,5	9,87	17,27	24,7	32,1
Extension	0	0,0056	0,0246	0,0456	0,0666	0,0896

Gauge length $=56 \mathrm{~mm}$
Original diameter of the $\mathrm{bar}=11,27 \mathrm{~mm}$
Copy and complete the stress-strain table of the above information in exactly the following format:

$\sigma=M P a$ Load						
$\varepsilon\left(\times 10^{-4}\right)$						

7.2 The following is the calculated stress-strain results of the data obtained from a tensile test carried out on metal test by ISCOR.

STRESS-STRAIN TABLE

Stress $\left(\times 10^{6}\right)$	0	14	28	42	56	84	112
Strain $\left(\times \mathbf{1 0}^{-4}\right\}$	0	2	4	6	8	13	18,4

7.2.1 Use the table above to draw a neat stress-strain graph in detail (use reasonable scales).
7.2.2 Use the graph in QUESTION 7.2.1 to determine the value of the Young's modulus of elasticity of the material.

QUESTION 8: HEAT

8.1 A 90 litre cylinder is filled with nitrogen to capacity at a pressure of $20,11 \mathrm{kPa}$. If the cylinder enlarges, the pressure drops to 11 kPa .

Calculate the increase in the volume of the cylinder.
8.2 A circular copper disc has a radius of $0,44 \mathrm{~m}$ at $22^{\circ} \mathrm{C}$. The linear expansion coefficient of the copper material is $20 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

Calculate the increase in the volume of the cylinder:
8.2.1 The increase in the diameter of the disc if the final temperature is increased to $84^{\circ} \mathrm{C}$
8.2.2 The increase in the area of the disc if the final temperature is
raised to $140^{\circ} \mathrm{C}$
8.3 $0,61 \mathrm{~kg}$ of nitrogen at an absolute pressure of 100 kPa and with a volume of 521 litres has a temperature of $27^{\circ} \mathrm{C}$.

Calculate the gas constant for nitrogen.

TOTAL:
100

ENGINEERING SCIENCE N4

FORMULA SHEET

Any applicable formula may also be used.

$$
\begin{aligned}
& L=\frac{u^{2}}{g} \sin 2 \theta \\
& v=u+a t \\
& v^{2}=u^{2}+2 a s \\
& s=u t+\frac{1}{2} a t^{2} \\
& P=F V \\
& F_{a}=m a \\
& E_{p}=m g h \\
& E_{k}=\frac{1}{2} m v^{2} \\
& \omega=\frac{\theta}{t} \\
& \omega_{2}=\omega_{1}+\alpha t \\
& v_{\text {ove }}=\frac{u+v}{2} \\
& \omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta \\
& \theta=\omega_{1} t+\frac{1}{2} \alpha t^{2} \\
& P=\frac{F}{A} \\
& v=\omega R \\
& v=\pi D n \\
& a=\alpha R \\
& \tau=F R \\
& W_{\text {ork }}=\tau \theta=W D \\
& P=2 \pi n T \\
& P=F v \\
& P=T \omega \\
& n=\frac{N}{60} \\
& v=u+a t \\
& v^{2}=u^{2}+2 a s \\
& s=u t+\frac{1}{2} a t^{2} \\
& P=F v \\
& F_{a}=m a \\
& E_{p}=m g h \\
& E_{k}=\frac{1}{2} m v^{2} \\
& v_{\text {ave }}=\frac{u+v}{2} \\
& P=\frac{F}{A} \\
& m=\rho \times v o l \\
& P=\rho g h \\
& \frac{W_{r}}{F_{p}}=\frac{D^{2}}{d^{2}} \\
& \epsilon=\frac{x}{l} \\
& E=\frac{\sigma}{\epsilon} \\
& \sigma=\frac{F}{A} \\
& M \cdot A=\frac{F_{p}}{F_{h}} \cdot \frac{100}{\eta}=H \cdot V \quad E=\frac{F l}{A x} \\
& V_{s}=V_{a} \cdot \frac{100}{\eta} \\
& \bar{y}=\frac{A_{1} y_{1} \pm A_{2} y_{2} \cdots}{A_{1} \pm A_{2} \cdots} \\
& \bar{y}=\frac{v_{1} y_{1} \pm v_{2} y_{2} \ldots}{v_{1} \pm v_{2} \cdots}
\end{aligned}
$$

INFORMATION SHEET

PHYSICAL CONSTANTS

QUANTITY	CONSTANTS
Atmospheric pressure	$101,3 \mathrm{kPa}$
Density of copper	$8900 \mathrm{~kg} / \mathrm{m}^{3}$
Density of aluminium	$2770 \mathrm{~kg} / \mathrm{m}^{3}$
Density of gold	$19000 \mathrm{~kg} / \mathrm{m}^{3}$
Density of alcohol (ethyl)	$790 \mathrm{~kg} / \mathrm{m}^{3}$
Density of mercury	$13600 \mathrm{~kg} / \mathrm{m}^{3}$
Density of platinum	$21500 \mathrm{~kg} / \mathrm{m}^{3}$
Density of water	$1000 \mathrm{~kg} / \mathrm{m}^{3}$
Density of mineral oil	$920 \mathrm{~kg} / \mathrm{m}^{3}$
Density of air	$1,05 \mathrm{~kg} / \mathrm{m}^{3}$
Electrochemical equivalent of silver	$1,118 \mathrm{mg} / \mathrm{C}$
Electrochemical equivalent of copper	$0,329 \mathrm{mg} / \mathrm{C}$
Gravitational acceleration	$9,8 \mathrm{~m} / \mathrm{s}^{2}$
Heat value of coal	$30 \mathrm{MJ} / \mathrm{kg}$
Heat value of anthracite	$35 \mathrm{MJ} / \mathrm{kg}$
Heat value of petrol	$45 \mathrm{MJ} / \mathrm{kg}$
Heat value of hydrogen	$140 \mathrm{MJ} / \mathrm{kg}$
Linear coefficient of expansion of copper	$17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Linear coefficient of expansion of aluminium	$23 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Linear coefficient of expansion of steel	$12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Linear coefficient of expansion of lead	$54 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Specific heat capacity of steam	$2100 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat capacity of water	$4187 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat capacity of aluminium	$900 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat capacity of oil	$2000 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat capacity of steel	$500 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat capacity of copper	$390 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$

