

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T650**(E)**(N22)T

NATIONAL CERTIFICATE

ENGINEERING SCIENCE N4

(15070434)

22 November 2017 (X-Paper) 09:00–12:00

This question paper consists of 8 pages, 1 formula sheet and 1 information sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ENGINEERING SCIENCE N4 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Subsections of questions should be kept together.
- 5. Rule off across the page on completion of each question.
- 6. ALL formulae should be shown in the answer. Show ALL the steps in between your answers.
- 7. Use only BLUE or BLACK ink.
- 8. ALL sketches and diagrams must be done in pencil.
- 9. Take $g = 9.8 \text{ m/s}^2$.
- 10. Write neatly and legibly.

QUESTION 1: GENERAL

- 1.1 Define the following:
 - 1.1.1 The angular displacement
 - 1.1.2 Strain

Hook's law

 (2×1) (2)

(2)

(2)

1.2 State the following laws:

1.2.3

- 1.2.1 Pascal law (1)
- 1.2.2 Newton's first law of motion
- 1.3 Discuss Boyle's law in detail (show the statement, equation and the sketch). (4)
- 1.4 The velocity of a Jet-C fighter plane is 650 km/h. The flight sergeant wants to fly directly west but the southerly wind of 110 km/h blows the plane off course.

	Draw a ve	locity vecto	or diagram of the a	bove in detail.		(2)
1.5	1.5.1	State TWC	O characteristics o	f liquid.		(2)
	1.5.2	Name TW	O types of hydrau	lic accumulators.		(2)
1.6	What is th	e direction	of the north-easte	rly wind that is bl	own at 55 m/s?	(1)
1.7	In your ow	/n words ex	plain the following	j :		

- 1.7.1 Pressure is directly proportional to the density of liquid.
- 1.7.2 The braking force of the moving vehicle is 350 N.

(2 × 1) (2)

[20]

QUESTION 2: KINEMATICS

2.1 A Cheetah-C jet plane flies and covers a displacement of 280 km while a south-westerly wind of 90 km/h blows it off course. The pilot wants to go N35[°]W within 1 hour 35 minutes.

Calculate the following:

2.1.1	The resultant velocity	(2)

2.1.2 The direction of flight in order for the pilot to go N35 $^{\circ}$ W (4)

2.2 Two vehicles start moving simultaneously. Vehicle P moves at 270 km/h W64°N while vehicle Q moves at 200 km/h directly east.

Calculate the velocity of P relative to Q.

(4)

2.3 In the commonwealth games that were played last summer, Rosina Madihlaba was the hopeful gold medalist for South Africa. She won a gold medal from one of the fields (high jump) that she participated in at her maximum speed ever of 12,4 m/s at 40° to the ground.

Calculate the following:

- 2.3.1 The maximum height she jumped
- 2.3.2 The velocity she needs to jump a maximum height of 4,21 m at 40°
 - (2 × 2) (4) [14]

QUESTION 3: ANGULAR MOTION

- 3.1 Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question number (3.1.1–3.1.2) in the ANSWER BOOK.
 - 3.1.1 A blue racing car of mass of 1,8 tons races around a circular path of diameter 120 m at a speed of 180 km/h and covers a distance of 35 m.

The angular displacement of the car is ...

- A 0,835 rad.
- B 0,524 rad.
- C 0,355 rad.
- D 0,583 rad.
- 3.1.2 The angular velocity of the car is ...
 - A 0,535 rad/s.
 - B 0,825 rad/s.
 - C 0,582 rad/s.
 - D 0,833 rad/s.

 (2×2) (4)

- 3.2 A machine has a torque of 228 Nm at its spindle. The diameter of the spindle is 68 cm and the rotational frequency of the spindle is 12,5 rad/s.
 - 3.2.1 The power exerted is ...
 - A 1,85 kW.
 - B 2,55 kW.
 - C 1,58 kW.
 - D 2,85 kW.
 - 3.2.2 If the efficiency of the machine is 94%, the input power of the machine is ...
 - A 2,30 kW.
 - B 3,30 kW.
 - C 3,032 kW.
 - D 2,30 kW.

- (2×2) (4)
 - [8]

(3) **[9]**

QUESTION 4: DYNAMICS

4.1 A soccer star is travelling with a car of a mass of 880 kg on a horizontal road at a velocity of 30 m/s. He immediately applies the brakes so as to stop 50 m away (he was successful). The resistance to motion on the horizontal road is 295 N.

Calculate the following:

4.1.1	The deceleration of the car
4.1.2	The braking force

4.2 An engine exerts a force of 40 000 N on a vehicle and draws it up an incline of 550 00 N and draws it up an incline plane of 1 : 150 against a resistance of 80 N/ton. The total mass of the engine and the vehicle is 280 ton.

Calculate the acceleration of the vehicle.

QUESTION 5: STATICS

- 5.1.1Calculate the magnitude of the supports.(2)
- 5.1.2 Draw a shear-force diagram in detail. (2)
- 5.1.3 Determine the bending moments at main principal points. (3)
- 5.1.4 Draw the bending moment diagram in detail. (3)
- 5.2 Calculate the position of the centroids of laminae from the x-axis (from AD).

(5) [**15**] -7-

QUESTION 6: HYDRAULICS

6.1 The data below refer to a single-acting hydraulic press.

Diameter of the ram piston	= 440 mm
Diameter of the plunger piston	= 100 mm
Stroke length of the plunger	= 130 mm
Mechanical advantage of the plunger	= 22

Calculate the following:

- 6.1.1 The effort force that must be applied to the handle to lift a load of 4,8 Mg if the efficiency is 92% (5)
- 6.1.2 The distance the load will be raised after 150 pumping strokes of the plunger if the efficiency is 92%
- 6.2 The plunger of a three-cylinder pump has a diameter of 90 mm and a stroke length of 590 mm. The crankshaft speed is 240 r/min.

Calculate the quantity of water delivered in litres per second if the slip is 1,8%. (3)

6.3 The borehole pumps water from a depth of 65 m at a rate of 320 litres/minute. The installation efficiency of the borehole pump is 75%.

Determine the power of the driving pump of the electric motor.

(3) **[15]**

(4)

QUESTION 7: STRESS, STRAIN AND YOUNG'S MODULUS OF ELASTICITY

7.1 The following readings were obtained from a tensile test on a mild steel bar at Modise Engineers Pty Ltd.

Load KN	0	2,5	9,87	17,27	24,7	32,1
Extension	0	0,0056	0,0246	0,0456	0,0666	0,0896

Gauge length = 56 mm Original diameter of the bar = 11,27 mm

Copy and complete the stress-strain table of the above information in exactly the following format:

$\sigma = MPa$ Load			
(10-4)			
ε (×10 ⁻)			

(3)

7.2 The following is the calculated stress-strain results of the data obtained from a tensile test carried out on metal test by ISCOR.

STRESS-STRAIN TABLE

Stress (×10 ⁶)	0	14	28	42	56	84	112
Strain (×10 ⁻⁴ }	0	2	4	6	8	13	18,4

- 7.2.1 Use the table above to draw a neat stress-strain graph in detail (use reasonable scales).
- 7.2.2 Use the graph in QUESTION 7.2.1 to determine the value of the Young's modulus of elasticity of the material.

(3) **[9]**

(3)

QUESTION 8: HEAT

8.1	A 90 litre If the cylin	cylinder is filled with nitrogen to capacity at a pressure of 20,11 kPa. Inder enlarges, the pressure drops to 11 kPa.	
	Calculate	the increase in the volume of the cylinder.	(2)
8.2	A circular coefficien	copper disc has a radius of 0,44 m at 22 °C. The linear expansion t of the copper material is 20×10^{-6} /°C.	
	Calculate	the increase in the volume of the cylinder:	
	8.2.1	The increase in the diameter of the disc if the final temperature is increased to 84 $^{\circ}\mathrm{C}$	(3)
	8.2.2	The increase in the area of the disc if the final temperature is raised to 140 $^{\circ}\mathrm{C}$	(2)
8.3	0,61 kg o 521 litres	f nitrogen at an absolute pressure of 100 kPa and with a volume of has a temperature of 27 °C.	
	.		(-)

Calculate the gas constant for nitrogen. (3)
[10]
TOTAL: 100

ENGINEERING SCIENCE N4

FORMULA SHEET

Any applicable formula may also be used.

$L = \frac{u^2}{2} \sin 2\theta$	v = u + at	
g v	$v^2 = u^2 + 2as$	$W_{ork}.=P_{ress}\times V_{ol}=A.V.$
$t_L = 2\frac{\pi}{g}\sin\theta$	1	$Q = mc\Delta t$
$\overline{V} = \frac{s}{t}$	$s = ut + \frac{u}{2}at$	$\Delta l = l_o \alpha \Delta t$
·	P = Fv	$\beta = 2\alpha$
$\theta = 2\pi n$	$F_a = ma$	$\gamma = 3\alpha$
$S = R\theta$	$E_p = mgh$	P.V. PaVa
$\omega = 2\pi N$ θ	$r = \frac{1}{2}$	$\frac{T_{1}}{T_{1}} = \frac{T_{2}}{T_{2}}$
$\omega = \frac{\sigma}{t}$	$E_k = \frac{-mv}{2}$	PV = mRT
$\omega_2 = \omega_1 + \alpha t$	$v_{ave} = \frac{1}{2}$	
$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	$P = \frac{F}{I}$	$\in = \frac{x}{l}$
$\theta = \omega_{\rm l} t + \frac{1}{2} \alpha t^2$	$m = \rho \times vol$	_ σ
$v = \omega R$	$P = \rho g h$	E = E
$v = \pi D n$	$W_r = D^2$	$\sigma = \frac{F}{4}$
	$\frac{r}{F_p} = \frac{1}{d^2}$	A
v = T R $W_{out} = \tau \theta = WD$	$M_{-4} = \frac{F_{p}}{F_{p}} \frac{100}{-H_{-}} = H_{-}V$	$E = \frac{Fl}{r}$
$P = 2\pi nT$	$M.A = \frac{F_h}{F_h} \cdot \frac{\eta}{\eta} = H.V$	Ax
P = Fv	$V_{s} = V_{a} \cdot \frac{100}{100}$	$\frac{-}{y} = \frac{A_1 y_1 \pm A_2 y_2 \dots}{A_1 \pm A_2 \dots}$
$P = T\omega$	η	$- v_1 y_1 \pm v_2 y_2 \dots$
$n = \frac{N}{60}$		$y = \frac{1}{v_1 \pm v_2} \dots$

INFORMATION SHEET

PHYSICAL CONSTANTS

QUANTITY	CONSTANTS
Atmospheric pressure	101,3 kPa
Density of copper	8 900 kg/m ³
Density of aluminium	2 770 kg/m ³
Density of gold	19 000 kg/m ³
Density of alcohol (ethyl)	790 kg/m ³
Density of mercury	13 600 kg/m ³
Density of platinum	21 500 kg/m ³
Density of water	1 000 kg/m ³
Density of mineral oil	920 kg/m ³
Density of air	1,05 kg/m ³
Electrochemical equivalent of silver	1,118 mg/C
Electrochemical equivalent of copper	0,329 mg/C
Gravitational acceleration	9,8 m/s ²
Heat value of coal	30 MJ/kg
Heat value of anthracite	35 MJ/kg
Heat value of petrol	45 MJ/kg
Heat value of hydrogen	140 MJ/kg
Linear coefficient of expansion of copper	17 × 10 ⁻⁶ /°C
Linear coefficient of expansion of aluminium	23 × 10 ⁻⁶ /°C
Linear coefficient of expansion of steel	12 × 10 ⁻⁶ /°C
Linear coefficient of expansion of lead	54 × 10 ⁻⁶ /°C
Specific heat capacity of steam	2 100 J/kg.°C
Specific heat capacity of water	4 187 J/kg.°C
Specific heat capacity of aluminium	900 J/kg.°C
Specific heat capacity of oil	2 000 J/kg.°C
Specific heat capacity of steel	500 J/kg.°C
Specific heat capacity of copper	390 J/kg.°C